分类:论文范文 发表时间:2019-10-12 09:41
摘 要:高技术产业创新投入与成果产出关系研究是提升产业创新效率的重要依据。在文献回顾的基础上,构建了我国医药制造业创新投入与成果产出指标体系,并引入耦合模型对医药制造业2005-2017 年的创新投入产出数据进行实证分析。研究结果揭示了我国医药制造业创新投入与成果产出的综合水平、耦合关联度及耦合协调度,可为高技术产业技术创新与发展提供理论和实证支持。
关键词:高技术产业;创新投入;成果产出;耦合关系;医药制造业
0 引言
在全球信息化时代,经济社会的各个领域被信息技术广泛渗透,信息技术推动了产业转型升级和衍生了产业新形态。作为国家实施创新驱动发展战略的重要组成,高技术产业以其高投入、高创新、高风险、高附加值和高溢出特质,在改善我国产业结构与要素配置、促进传统产业技术进步、加快经济社会发展等方面发挥了重要作用,并取得了显著成效。2013 年我国高技术产业利润总额达7 432 亿元人民币[1],高技术产业出口总额达5 056.5 亿美元,位居全球第一[2]。
尽管近年来我国高技术产业对经济社会发展的贡献率不断提升,但是产业增加值率和劳动生产率都远低于发达国家,特别是高技术产业的劳动生产率仅为发达国家的1/20,加上自主创新能力不足,缺少自主知识产权,使得我国高技术产业难以满足国民经济发展需求[3]。在该背景下,供给侧结构性改革为我国经济转型,尤其是高技术产业创新绩效提升提供了新路径。在供给侧改革视域下探讨高技术产业投入产出效率,必须首先理清政府和市场的关系。一方面,政府通过资金投入和政策支持,引导和驱动高技术产业持续创新;另一方面,市场作为“无形之手”,通过协调资源配置、引导成果转化,有效检验和反映供给侧改革下高技术产业创新产出效率,进而促进高技术产业资源投入和成果产出协调发展。然而,在供给侧改革背景下探讨高技术产业创新投入产出效率的研究尚未见报道,同时,现有的高技术产业创新效率研究中也未涉及政府和市场因素。因此,在供给侧改革背景下,将政府和市场因素作为关键变量引入高技术产业创新效率实证研究,将是本文要解决的关键问题和重要创新。
根据《高技术产业(制造业)分类(2013)》,医药制造业作为高技术产业的重要分支,已成为我国加入WTO 以来发展最快的产业之一。随着经济社会发展、老龄人口增多以及生态环境变化,医药制造业的基础性和战略性地位更加凸显。近年来,尽管我国医药制造业的产能和规模都有了较大提升,但是研发投入利用率低,难以转换成有效的技术成果,从而导致研发活动失效,严重制约了产业整体创新效率的提升。因此,本文将从我国医药制造业的创新投入要素和成果产出入手,创新性地引入供给侧改革背景下的政府投入和市场产出变量,通过揭示二者之间的耦合作用规律和影响关系,为提升我国医药制造业创新效率提供理论和实证支持。
1 文献回顾
通过梳理现有研究发现,学术界对高技术产业创新投入和成果产出的关注主要通过创新效率研究体现。在高技术产业创新效率研究成果中,创新投入和成果产出要素、创新效率的定量方法以及相关实证检验是学者们关注的焦点。
首先,高技术产业创新效率主要通过创新投入和成果产出的作用关系予以体现,选取反映创新效率的投入产出要素是创新效率研究的第一步。从研究创新效率的投入要素指标来看,邵云飞[4]将R&D 经费内部支出、R&D 活动人员折合全时当量等作为创新投入要素指标;史修松[5]认为科技活动人员数是影响创新效率的关键投入要素;罗彦如[6]选取科技活动经费筹集额作为创新效率投入指标。从研究创新效率的成果产出要素来看,Cohen[7]、邵云飞[8]和李婧[9]都将专利申请数作为创新效率的产出要素指标,鲁新[10]将产出要素聚焦于新产品产值,邬龙[11]则在相关研究中选取专利数量和新产品利润等要素。
其次,通过文献梳理发现,为了更好地测度高技术产业创新效率,学者们较为常用的定量研究方法主要有数据包络分析(DEA)和随机前沿函数(SFA)等。李牧南[12]运用DEA 方法对专业镇技术创新效率进行了定量计算,发现了影响专业镇创新效率的关键因素;夏维力[13]基于DEA-Malmquist 对中国高技术制业的R&D 动态效率进行分析,发现制造业整体的R&D 效率处于上升期;冯志军[14]针对DEA 的不足,构建了资源约束型两阶段DEA 模型,实现了对高技术产业研发创新效率测算方法的改进。余泳泽[15]则应用SFA 方法,将创新效率分为技术创新效率和创新产品转化效率两个阶段;韩晶[16]基于SFA 方法,对中国制造业创新效率进行了分析,认为中国制造业的创新产出主要依靠研发经费拉动;Wang[17]基于SFA 方法,对30 个国家的研发效率进行研究,结果发现收入水平与研发效率正相关。张信东[18]则综合采用DEA 和SFA 两种方法研究结构调整中的行业创新效率,提出了基于行业创新效率的结构转型思路。
最后,学者们通过大量定量研究,得到了关于高技术产业创新效率的实证结果。这些结果多视角、多维度地揭示了高技术产业创新效率的影响因素及作用规律。如通过对区域技术创新效率的测度,发现区域基础设施建设、市场开放度和人力资本禀赋等因素对创新效率的影响最大(王锐淇,彭良涛,蒋宁,2010);有实证结果认为,金融环境、地区经济实力比政府研发投入、对外开放程度及城镇化水平等要素更显著影响高技术产业的创新效率(宇文晶,马丽华,李海霞,2015);也有学者认为,科技活动人员和科技活动经费投入是影响企业创新效率的关键因素;肖兴志[19]指出,不同产权结构对创新效率的影响不同,非国有产权比国有产权具有更高的创新效率(赵树宽,余海晴,巩顺龙,2013);余泳泽[15]的实证结果得出,市场化程度、企业规模、政府政策支持和企业自身经营绩效对创新效率影响显著。
指标选择与数据来源在文献回顾基础上,梳理和总结现有高技术产业创新效率研究中的投入和产出指标,结合我国医药制造业产业创新的阶段性特征对指标进行筛选。基于指标在不同创新阶段的作用和关系,构建医药制造业创新投入和成果产出指标体系。
首先,医药制造业属于典型的研发驱动型产业,具有高投入、高回报、投资周期长和风险大等特征[20],本文在指标筛选时特别考虑了指标与产业创新特征的关联性。一方面,从创新投入指标看,医药制造业创新与产业规模有密切关系,具有一定规模的产业往往能够产生更高的创新效益。因此,本文选择医药制造业拥有的企业数作为产业规模的衡量指标,反映高技术产业实现创新的规模基础。R&D 人员全时当量是医药制造业创新人力指标,反映高技术产业创新的人力资源投入水平。R&D 经费支出和新产品开发经费支出是医药制造业创新财力指标,反映高技术产业创新过程中用于研发和新产品开发的经费投入情况,该部分既包含企业自主投入,又包含政府的产业研发投入,反映供给侧改革下的政府投入。另一方面,从创新产出指标看,专利申请数和拥有发明专利数反映医药制造业的人力、财力和物力资源在创新中形成的研发产出;利润和出口额则是医药制造业经济效益产出的度量指标,反映供给侧改革下的市场产出。益产出。因此,医药制造业实现的利润和出口额将成为度量技术转化阶段创新产出的主要指标。
本文以我国医药制造业为研究对象,探究产业创新投入和成果产出的耦合作用关系及规律,同时,考虑到医药制造业创新投入时间长、成果转化延迟等因收集2005-2017 年我国医药制造业创新投入和成果产出数据,旨在揭示我国医药制造业创新投入和成果产出总体耦合趋势以及较长时间内创新投入与成果产出要素的耦合情况。本文数据来源于2005-2017 年《中国统计年鉴》、《中国科技统计年鉴》和《中国高技术产业统计年鉴》。
3 耦合关系模型构建
根据协同学理论,本文研究的医药制造业创新投入和成果产出耦合关系,实质上是创新投入子系统和创新成果产出子系统间的协同作用,而耦合度则反映产业创新投入和成果产出子系统间的协同作用程度。因此,医药制造业创新投入与成果产出的耦合度是指医药制造业创新投入与成果产出两个子系统通过各自的耦合要素,产生相互作用力的程度。耦合度对于判别医药制造业创新投入和成果产出协同作用强度以及作用时序区间具有重要意义。因此,构造医药制造业创新投入和成果产出耦合模型是为了更好地评判我国医药制造业创新投入与成果产出系统耦合水平。本文构建的医药制造业创新投入和成果产出耦合模型由耦合关联度模型和耦合协调度模型构成,并经过5 个计算步骤。3.1 数据标准化处理:正效应极差标准化法
为了消除不同量纲对分析结果带来的不利影响,
首先对指标原始数据进行标准化处理。本文构建的我国医药制造业创新投入与成果产出指标体系中,所有指标均为正向指标,即指标数值越大,对创新投入和成果产出子系统的影响越显著。因此,本文采用正效应极差标准化法对指标原始数据进行归一化处理,标准化后的数据介于0~1 之间。正效应极差标准化公式为:
x'ij = x ij -minx ijmaxx ij -minx ij(i
=1,2,3 …m , j =1,2,3…n ) (1)
其中,m 表示子系统数,n 表示指标数。maxx ij 和minx ij 分别表示第i 项子系统的第j 项指标在所有样本中的最大值和最小值。
3.2 指标权重确定:主成份分析法
主成分分析法采用降维方法,从多个复杂因素中提取几个主要因素,使得提取的主要因素累计贡献率在85%以上,避免了指标权重确定的主观随意性。运用主成份分析法计算指标权重,首先提取互不相关的公共因子。一般以特征值大于1 为标准,使用最大方差旋转技术求出因子载荷矩阵,然后根据因子载荷矩阵求出子系统内指标的共同度H 2i,计算公式为:
H 2i=∂2i
1 +∂2i 2 +…+∂2ip (2)
其中,i 表示指标数,p 表示公共因子数。然后根据共同度结果,计算各指标在子系统中的权重,计算公式为:
λi = H 2i
Σni=1 H 2i(3)
其中,i =1,2,3…n ,λi ∈(0,1),Σni =1λi =1。
3.3 创新投入与成果产出综合评价
在计算创新投入子系统和成果产出子系统耦合度之前,需要计算不同年份各子系统的综合评价指数。
各子系统综合评价指数计算公式如下:
u i =Σnj =1λij ×x'ij (4)式(4)中,u i 为某子系统的综合评价指数,x'ij 为各指标的标准化数值,λij 为各指标权重值。本文将医药制造业创新投入子系统和成果产出子系统的综合评价指数划分为4 个层级,具体如表2 所示。
3.4 耦合关联度模型
本文的耦合关联度模型为:
C t =f (u 1t ,u 2t )=2{(u 1t *u 2t )/[(u 1t +u 2t )(u 1t +u 2t )]}12(5)C t 反映了第t (t =1, 2, 3…T )年创新投入与成果产出的耦合关联强度。式(5)中,u i ∈[0,1],u 1t 和u 2t分别表示医药制造业创新投入和成果产出两个子系统内各指标对系统有序程度的贡献。将医药制造业创新投入和成果产出两个子系统的耦合关联度划分为4 个层级。
3.5 耦合协调度模型
创新投入和成果产出为医药制造业创新系统的两个子系统,两者的耦合协调度模型为:
U t =α*u 1t +β*u 2t (6)
式(6)中,α 和β 分别表示创新投入与成果产出子系统的权重值,本文界定α=β=0.5,表示两个子系统在医药制造业创新体系中具有同等重要程度。Ut 表示创新投入和成果产出子系统的综合评价指数,反映两者的整体效应和水平。
D t = C t *U t (7)
式(7)中,D t 表示医药制造业创新投入和成果产出子系统的耦合协调度。由于C t 、Ut ∈[0,1],所以D t ∈[0,1]。将医药制造业创新投入和成果产出两个子系统的耦合协调度值划分为4 个层。
4 实证结果分析
将标准化后的原始数据代入式(2)和式(3),分别计算我国医药制造业创新投入和成果产出指标的共同度及权重,结果如表5 所示。计算结果显示,创新投入子系统下设的4 个指标均具有较高共同度,说明这些指标对于解释创新投入维度具有较高灵敏度;成果产出子系统下设的4 个指标的共同度值也接近于1,说明上述指标能够很好地反映和解释成果产出维度。另外,根据式(3),计算出创新投入和成果产出子系统的各指标权重。
5 结语
探究高技术产业创新投入与成果产出关系及作用规律对提升产业创新效率具有重要的理论和实践意义。理论上,本文构建了我国医药制造业创新投入与成果产出指标体系,将各阶段技术创新特征与指标选取相结合,将研发产出和经济效益产出相结合,具有一定科学性和全面性。同时,本文创新性地将耦合模型运用到我国医药制造业创新投入与成果产出作用规律研究,对于揭示二者影响关系和协同发展趋势具有一定客观性、合理性。
参考文献:
[1] 国家统计局. 中国高技术产业统计年鉴.2014[M]. 北京:中国统计出版社, 2014.
[2] 世界银行. 2014 年世界发展指标[M]. 北京:中国财政经济出版社, 2014.
[3] 楚明钦. 产业发展、要素投入与我国供给侧改革[J]. 求实,2016(6):33-39.
[4] 邵云飞,詹坤,汪腊梅. 中国医药产业创新效率的BCCMalmquist时空差异研究[J]. 科研管理, 2016(S1):32-39.Shao
[5] 史修松,赵曙东,吴福象.中国区域创新效率及其空间差异研究[J].数量经济技术经济研究,2009(3):45-55.
[6] 罗彦如,冉茂盛,黄凌云.中国区域技术创新效率实证研究———三阶段DEA 模型的应用[J]. 科技进步与对策,2010(7):21-27.
相关阅读
论文常识
期刊知识
著作出版
教材出书
专利申请
出版社